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Motivation
Mission of Department of Energy Climate Change Research Division:
‘deliver improved scientific data and models about the potential 
response of the Earth’s climate to increased greenhouse gas levels for 
policy makers to determine safe levels of greenhouse gases in the 
atmosphere.’

Process exist that impact the ‘potential response of the Earth’s climate 
to increased greenhouse gas levels‘ yet have spatial scales far below 
the current resolution of IPCC-class climate models.

How do we deal with these processes, yet retain a computationally-
tractable model of the Earth’s climate?

We propose to do this through the application of variable-resolution, 
unstructured meshes. Target Earth system processes include oceans, 
ice sheets, ice shelves, biogeochemistry, and beyond.
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Examples of important multi-scale processes

ocean biogeochemistry

ice shelf-ocean
interaction

Bales et al 

Photo by R. J. 

sea-level 
rise
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We propose to accommodate the 
requirement to resolve multiple scales 

within a single model by using 
Spherical Centroidal Voronoi Tessellations.
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Definition of a Voronoi Tessellations

Given a region, S
And a set of generators, zi ...

We are guaranteed that the line 
connecting generators is
orthogonal to the shared edge
and is bisected by that edge.

But this does not mean that the grid is nice ....

The Voronoi region, Vi, for each
zi is the set of all points closer
to zi than zj for j not equal to i.
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Definition of a Centroidal Voronoi Tessellations

zi zi* 
= center of mass wrt

a user-defined density function

Dual tessellation
vertex at circumcenter
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Non-uniform Centroidal Voronoi Tessellations

Distribute generators in such a way as to make the grid regular.
Also biases the location of those generators to regions of high density.
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(S)CVTs have their roots in applied math ...

Gersho conjecture (now proven in 2D): as we added generators, all 
cells evolve toward perfect hexagons. Meaning that the grid just 
keeps getting more regular as we add resolution.

Optimal sampling: given a region, R, and N buckets to measure 
precipitation in R, the optimal placement of those buckets is a 
CVT. If a prior distribution, P, of precipitation is known, the CVT 
takes that information into account with rho=P^1/2.

Guaranteed to have 2nd-order truncation error of Poisson 
equation.

In summary: if Voronoi tessellations are to be used, then there is 
no good reason not to use Centroidal Voronoi Tessellations.
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A mesh is no better than the
numerical method we use with it

to discretize the continuous equations.

So what method should we use
for variable resolution SCVTs?
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A scoping of potential methods for SCVTs

Method geostrophic 
adjustment

vortex
dynamics

energy
conservation

computational
modes

computational
efficiency

maps to
unstructured 

Voronoi 
diagram

ZM-grid
(staggered FV) + + + - . --

A-grid
(collocated FV) - -- + + + ++

Z-grid
(collocated vor-div FV) + + . ++ -- +

Hex C-grid
(proj FV based on VD) -- . . -- . +

Tri C-grid
(proj FV based on DT) + + + - . +

FV: Finite Volume
VD: Voronoi Diagram
DT: Delaunay Triagulation

+ : positive aspect
- : negative aspect
++ : outstanding relative to others
-- : deficiency of concern
 .  : neutral
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I will use the ZM-grid to highlight the 
challenges associated with variable-

resolution Voronoi tessellations.

Note: the grids we will look at are 
designed to be beyond worst-case scenario.
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Variable Resolution SCVTs come with their own issues.

Randomly color Voronoi Diagram and Delaunay Triangulation
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A closer look 

short 
edges
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Adding the Delaunay triagulation ....

circumcenter
falls outside

triangle
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Delaunay triangulation and Circumcenter
one-to-one correspondence between triangles and vertices
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The ZM-grid staggering is not a natural fit 
for this situation. 
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When we use the ZM staggering, we do not want the 
velocity point to fall outside its corresponding triangle.

mass points

velocity points
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The barycenter (or similar) alternative ...

Unfortunately we lose the properties of the Voronoi Diagriam and the 
100 years of mathematical analysis built on Voronoi diagrams.

Intersection is
no longer orthogonal

The  generators have 
not moved, but we 
now place the vertices 
at the barycenter.
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The preceding discussion is meant to
highlight the challenges of using
variable resolution SCVT grids.

The ZM-grid may turn out to be the best
choice, but it is useful here to explore 

other choices.
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Turning to the collocated (A-grid) FV 
approach
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The null-space of collocated quad and 
triangle grid is not representative of the

“hexagonal” collocated grid.

Null space of Laplacian contains the red-black checkerboard.
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The Laplacian is not nearly as compact as the Z-grid, ZM-grid, 
or Hex C-grid --- but there is no checkerboard pattern.
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Dispersion relation for collocated hexagonal grid
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Dispersion along k=0 and l=0
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While there is no checkerboard pattern,
there is a possibility for “striping.”

k=0

l=0

analytic
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As a part of this scoping process, we
have written a shallow-water model based 

on collocation.
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Designed for high-performance computing
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Look at shallow-water test case 5.

Geostrophically-balance flow confronts
a 2 km mountain at t=0.
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Relative Vorticity, day 15
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Kinetic Energy, day=15
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Error in thickness field at t=24 hours
(ref solution is T511 global spectral model)
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L2 norm, SWTC#5 (40962, glevel 6)
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This all looks promising to this point.

We used a uniform SCVT in the previous
example, but the model is applicable to any 

SCVT.

In SWTC#5 we know that the solution is
dependent almost entirely on the accuracy
of the forcing. We should be able to move

our degrees of freedom to that region
and get a more accurate solution.
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A closer look at the variable resolution.
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Kinetic Energy, day 15
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Relative Vorticity, day 15.
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A closer look around the mountain

Striping is associated
with nonlinear instability
(potential enstropy in this
case). Also, the dispersion
relation indicated that this
collocated method is 
susceptible to striping.



Kakushin Workshop 2007

Thickness error, t=24 hours
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Solution error as a function of time.
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Summary of collocated grid findings.

Produces remarkably smooth flows when the grid is 
uniform. I attribute this to the lack of a checkerboard 
pattern for the Voronoi tessellation.

When the grid has variable resolution, solution becomes 
noisy (striping). The associated nonlinear stability is due 
to an unconstrained growth in potential enstrophy.

The lack of access to potential vorticity (and therefore) 
potential enstrophy compels me to try another method.
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Turning now to the triangular C-grid.

mass

momentum

vorticity

mass lives on the Delaunay
triangulation and vorticity
lives on the Voronoi diagram.

Attributes:
  PV is conserved.
  Unique discrete Helmoltz decomposition
  geostrophic balance
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Raviat-Thomas Element

Given the normal velocity
components on the cell edges,
there is a UNIQUE full velocity (U)
vector with the following properties:
  1. defined at the center of triangle
  2. varies linearly over triangle
  3. U dot n = velocity at each edge
  4. div (U) equals divergence

PV flux across each edge
of the Voronoi diagram is used as
the eta k x u term in the momentum
equation.

Guarantees that the momentum
evolves with an accompanying PV
field with bounded enstrophy!
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We are currently implementing this method

Positives:
  Vorticity dynamics

Negatives:
  Checkerboard mode in mass (monotone advection)
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Summary: #1 of 3
Over the last decade, an increased in accuracy due 
to running our quasi-uniform simulations at higher 
and higher resolution has somewhat masked the 
importance of having energy and potentially-
enstrophy bounded schemes.

As we move to variable resolution, nested methods, 
or adaptive methods the importance of boundedness
will likely reemerge. 

This is because in regions of variable resolution, the 
truncation error is relatively large and, more 
importantly, not smooth.
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Summary: #2 of 3
Regardless of the physical system (atmosphere, 
ocean, land ice, etc.) there are two reasons to 
implement multi-scale methods.

#1. To allow the simulation of NEW processes not 
otherwise permitted in the modeling framework (i.e 
ocean eddies, hurricanes, etc).

#2. To allow for a more accurate solution. In that 
to expect a reduction in both truncation and 
solution error to a give PDE. 

#2 does not follow from #1.
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Summary: #3 of 3
Can we obtain more accurate simulations using 
variable and/or adaptive grids than we can obtain 
with the commensurate quasi-uniform grid?

Specifics:
#1. Use the full shallow-water equations. Something 
like SWTC#5 or similar.

#2. Compare answers the results when using the 
same number of degrees of freedom positioned in a 
quasi-uniform manner.

What does it mean if we can not consistently get 
more accurate simulations using variable and or 
adaptive grids as compared to their uniform 
counterparts?
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Thank you


